Регулируемый блок питания своими руками 0 30в

Самодельный регулируемый блок питания 0-30В

Блок питания достаточно простой и содержит минимум деталей. Позволяет регулировать выходное напряжение в пределах 0-30В. Максимальный ток около 2А.R1 резистор подстроечный, управляет напряжением. Марка СП3-4ВМ. Имеется выключатель R1,2.

Номинал 4.7кОм R4 резистор подстроечный, настройка вольтметра. Марка СП5-3. Номинал 10кОмОсновой данного самодельного блока питания является транзистор VT1, который и регулирует напряжение. Он работает в «режиме усиления». Резистор R1 используется для выставления напряжения.

Плюс с базы VT1 поступает на эмиттер VT2. С базы VT2 напряжение поступает на резистор R1, который регулирует напряжение поступающее на «минус» (точка между С3, VD1 и R3). Уменьшая сопротивление между VT2 и «минусом», мы увеличиваем напряжение.

При необходимости получить определённое напряжение, можно заменить R1 подходящим резистором.Резистор R1, кнопка SA1 и вольтметр наносятся за пределы платы на фальш-панель вместе в XT1, XT2, XS Транзистор VT1 необходимо вынести за пределы платы и установить на радиатор. При выходе из строя БП следует проверить VT1 на пробой или обрыв (он в первую очередь выходит из строя).Для точной настройки БП следует к его выходу подключить мультиметр и выставить напряжение до 50В.

Резистором R1 выставить максимальное напряжение, мультиметр должен показывать 30В. На встроенном вольтметре выставить 30В «подкручивая» резистор R4.

Список радиоэлементов

Блок питания для домашней лаборатории 0 …30В, током нагрузки 4А.

Данную схему я взял в интернете, много лет назад. Причина, по которой я решил ее выложить - в оригинале есть ошибки, которые я исправил. Поэтому, можете смело брать схему и делать этот блок питания. У меня он работает уже на протяжении четырех лет.

Данный блок питания построен на распространенной радио элементной базе и не содержит дефицитных деталей. Особенностью блока является то, что регулируемая микросхема DA4 не требует двух полярного питания.

На микросхеме DA1 введена плавная регулировка выходного тока в интервале 0 … 3А (согласно схеме). Этот предел можно расширить и до 5А, пересчитав резистор R4. В авторском варианте резистор R7 заменен на подстроечный, т.к. плавная регулировка тока не требовалась.

Ограничение тока при установленных номиналах деталей наступает при токе 3,2А и выходное напряжение упадет до 0. Ограничение тока подбирается резистором R7. Во время ограничения тока включается светодиод HL1, сигнализируя о коротком замыкании в нагрузке блока питания или превышении выбранного значения тока резистором R7.

Если резистором R7 выбран порог срабатывания 1,5А, то при превышении данного порога на выходе микросхемы появиться низкое напряжение (-1,4В) и на базе транзистора VT2 установится 127мВ. Напряжение на выходе блока питания становиться равным » 1мкВ, что для большинства радиолюбительских задач нормально, а на блоке индикации напряжения будет стоять 00,0 вольт.

Светодиод HL1 будет светиться. При нормальной работе узла перегрузки по току на базе микросхемы DA1 будет напряжение 5,5В и диод HL1 светиться не будет.

Характеристики блока питания следующие: Выходное напряжение регулируется от 0 до 30 В. Работа микросхемы DA4 особенностей не имеет и работает она в режиме однополярного питания. На ножку 7 подается 9В, ножка 4 соединена с общей шиной.

В отличие от большинства микросхем серии 140УД… добиться нулевого уровня на выходе блока питания при таком включении весьма трудновато. Экспериментальным путем выбор сделан на микросхему КР140УД17А.

При таком схемном решении удалось получить на выходе блока питания напряжение 156 мкВ, что на индикаторе будет отображаться как 00,0В. Конденсатор С5 предотвращает возбуждение блока питания. При исправных деталях и безошибочном монтаже блок питания начинает работать сразу.

Резистором R12 установлен верхний уровень выходного напряжения, в пределах 30,03В. Стабилитрон VD5 применен для стабилизации напряжения на регулирующем резисторе R16 и, если блок питания работает без сбоев, от стабилитрона можно отказаться.

Если резистор R7 применен как подстроечный, то им устанавливают порог срабатывания при превышении максимального тока. Транзистор VT1 устанавливается на радиатор.

Площадь радиатора рассчитывается по формуле: S = 10In*(Uвх. - Uвых.), где S - площадь поверхности радиатора (см2); In - максимальный ток потребляемый нагрузкой; Uвх. - входное напряжение (В); Uвых. - выходное напряжение (В). Схема блока питания показана на рис.1, печатная плата на рисунках 2 и 3.(для увеличения кликните по изображениям)То, что выделено красным, ошибки, которые я исправил.

Если так не сделать схема не работает. Резисторы R7 и R12 многооборотные СП5-2. Вместо диодной сборки RS602 можно применить диодную сборку RS407, RS603, в зависимости от тока потребления, или диоды 242 с любым буквенным индексом, но разместить их надо отдельно от печатной платы.

Входное напряжение на конденсаторе C1 может варьироваться в пределах 35… 40В без изменения номиналов деталей. Трансформатор Т1 должен быть рассчитан на мощность не менее 100 Вт, ток обмотки II не менее 5 А при напряжении 35 … 40 В. Ток обмотки III не менее 1 А. Обмотка III (иначе схема работать не будет, это одна из ошибок) быть с отводом от середины, который подключается к общей шине блока питания.

В печатной плате предусмотрена для этой цели контактная площадка. Размер печатной платы блока питания 110 х 75 мм.

Транзистор КТ825 составной и стоит он немало, поэтому его можно заменить транзисторами, как показано на рисунке 4. Транзисторы могут быть с буквенными индексами Б - Г, соединенных по схеме Дарлингтона. В авторском варианте применен транзистор TIP147.

Его внешний вид показан на рис. 5. Резистор R4 - отрезок нихромовой проволоки диаметром 1мм и длиной около 7см (подбирается экспериментально). Микросхемы DA2, DA3 и DA5 допустимо заменить отечественными аналогами К142ЕН8А, КР1168ЕН5 и К142ЕН5А.

Если панель цифровой индикации применяться не будет, то вместо микросхемы DA2 можно применить КР1157ЕН902 , а микросхему DA5 исключить. Резистор R16 переменный с зависимостью группы А. В авторском варианте применен переменный резистор ППБ-3А номиналом 2,2К - 5% . Если не предъявлять к узлу защиты больших требований, а требоваться он будет только для защиты блока питания от перегрузки по току и КЗ, то такой узел можно применить по схеме на рис.6, а печатную плату немного переработать.

Узел защиты собран на транзисторах VT1 и VT2 разной структуры, резисторах R1 - R3 и конденсаторе С1. Ток короткого замыкания 16мА. Резистором R1 регулируют порог срабатывания защитного блока.

При нормальной работе блока на эмиттере транзистора VT2 напряжение порядка 7 В и на работу блока питания влияния не оказывает. При срабатывание защиты напряжение на эмиттере транзистора VT2 падает до 1,2 В и через диод VD4 подается на базу транзистора VT2 блока питания.

Напряжение на выходе блока питания падает до 0 В. и Светодиод HL1 сигнализирует о срабатывании защиты. При нормальной работе блока питания и узла защиты светодиод - горит, при срабатывании защиты - гаснет.

При использовании узла защиты на рис.6 микросхему DA3 и конденсаторы С3, С5 можно из схемы исключить. Цифровая панель служить для визуального контроля напряжения и тока блока питания.

Она может быть использована отдельно от блока питания с другими конструкциями, выполняя вышеназванные задачи. Вольтметр и амперметр я взял отсюда. Вот несколько фото моего блока питания, на которых видно, что я еще прикрепил вентилятор для охлаждения, питания которого, я взял с третьей обмотки трансформатора, предварительно намотав ее с этим расчетом.(для увеличения кликните по изображениям)

Автор сайта

Вопросы пишите в комментариях, обязательно отвечу.

14 Комментариев

октября 01, 2012 | рубрики Источники питания и зарядные устройства

Это - высококачественный блок питания с переменным регулируемым напряжением от 0 и 30 вольт. Цепь также включает электронный ограничитель по току на выходе, который эффективно регулирует выходной ток 2 мА из максимально возможного в этой цепи (3 А). Данная характеристика делает этот блок питания незаменимым в лаборатории, так как она дает возможность регулировать мощность и ограничивать максимальный ток, который подключаемое устройство может потреблять, без боязни ее повреждения, если что-то пойдет не так.Есть также визуальный признак того, что этот ограничитель действует (светодиод), чтобы Вы могли видеть, что ваша цепь превышает допустимые пределы.Принципиальная схема лабораторного блока питания представлена ниже:

Технические характеристики

Входное напряжение: ................ 24 В- переменного тока; Входной ток: ................ 3 А (макс.); Выходное напряжение: ............. 0-30 В - регулируемое; Выходной ток: ............. 2 мА -3 А- регулируемый;Пульсация выходного напряжения: ... 0,01% максимум.- Небольшой размер, легко сделать, простая конструкция. - Выходное напряжение легко регулируется. - Ограничение выходного тока с визуальной индикацией. - Защита от перегрузки и неправильного подключения.Принцип работыНачнем с того, что здесь используется трансформатор с вторичной обмоткой 24В/3А, который подключается через входные зажимы 1 и 2 (качество выходного сигнала пропорционально качеству трансформатора).

Напряжение переменного тока с вторичной обмотки трансформатора выпрямляется диодным мостом, сформированным диодами D1-D4. Пульсации выпрямленного напряжения DC на выходе диодного моста сглаживает фильтр, образованный резистором R1 и конденсатором С1.

Цепь имеет некоторые особенности, которые делают этот блок питания отличным от других блоков этого класса. Вместо использования обратной связи для управления выходным напряжением, в нашей цепи используется операционный усилитель, чтобы обеспечивать необходимое напряжение для стабильной работы.

Это напряжение падает на выходе U1. Цепь работает благодаря зенеровскому диоду D8 - 5.6 V, который здесь работает при нулевом температурном коэффициенте тока. Напряжение на выходе U1 падает на диоде D8 включая его.

Когда это происходит цепь стабилизируется и напряжение диода (5.6) падает на резисторе R5. Ток который течет через опер. усилитель изменяется незначительно, а значит тот же ток будет течь через резисторы R5 и R6, и так как оба резистора имеют одинаковую величину напряжения, то общее напряжение будет суммироваться как при их последовательном соединении.

Таким образом напряжение, полученное на выходе опер. усилителя будет равно 11.2 вольт. Цепь с опер. усилителем U2 имеет постоянный коэффициент усиления приблизительно равный 3, и согласно формуле A=(R11+R12)/R11 увеличивает напряжения 11.2 вольт приблизительно до 33 вольт.

Триммер RV1 и резистор R10 использованы для установки выходных параметров напряжения, чтобы оно не уменьшилось до 0 вольт, независимо от величины других компонентов в цепи. Другая очень важная характеристика цепи - это возможность получить максимальный выходной ток, который можно получить из p.s.u.

Чтобы сделать это возможным напряжение падает на резисторе (R7), который связан последовательно с нагрузкой. IC отвечающий за эту функцию цепи - U3. Инвертированный сигнал на вход U3 равный 0 вольт подается через R21.

В то же самое время, не изменяя сигнала того же самого IC можно задать любое значение напряжения посредством P2. Допустим, что для данного выхода напряжение равно несколько вольт, P2 установлен так, чтобы на входе IC был сигнал в 1 вольт.

Если нагрузку усилить выходное напряжение будет постоянным и наличие R7 последовательно соединенного с выходом будет иметь незначительный эффект из-за своей низкой величины и из-за своей позиции за пределами цикла обратной связи управляющей цепи. Пока нагрузка и выходное напряжение постоянны цепь стабильно работает.

Если нагрузку увеличить, чтобы напряжение на R7 было больше, чем 1 вольт, U3 включен и стабилизируется в исходные параметры. U3 работает не изменяя сигнал к U2 через D9.

Таким образом напряжение через R7 постоянно и не увеличивается выше заданной величины (1 вольт в нашем примере) уменьшая выходное напряжение цепи. Это под силу устройству - поддерживать выходной сигнал постоянным и точным, что дает возможность получать на выходе 2 mA.

Конденсатор C8 делает цепь более устойчивой. Q3 необходим для управления LED всякий раз, когда вы используете индикатор ограничителя.

Чтобы сделать это возможным для U2 (изменял выходное напряжение вплоть до 0 вольт) необходимо обеспечить отрицательную связь, которая делается посредством цепи C2 и C3. Та же отрицательная связь использована для U3.

Отрицательное напряжение подается стабилизируясь посредством R3 и D7. Для избежания неконтролируемых ситуаций есть своеобразная цепь защиты, построенная вокруг Q1.

IC имеет внутреннюю защиту и не может быть поврежден.U1- источник опорного напряжения, U2 - регулятор напряжения, U3 - стабилизатор тока.Прежде всего, давайте рассмотрим основы в построении электронных цепей на печатных платах. Плата сделана из тонкого изоляционного материала покрытого тонким проводящим слоем меди, которая формируется таким образом, чтобы элементы цепи можно было соединить проводниками как показано на принципиальной схеме.

Необходимо правильно спроектировать печатную плату для избежания неправильной работы устройства. Для защиты платы в дальнейшем от окисления и сохранения ее в отличном состоянии ее необходимо покрыть специальным лаком, который защищает от окисления и облегчает пайку.

Пайка элементов в плату - единственный способ собрать это устройство и от того как вы это сделаете, будет зависеть успех вашей работы. Эта не очень сложно, если вы будете следовать нескольким правилам и тогда у вас не будет никаких проблем.

Мощность паяльника, который вы используете, не должна превышать 25 Ватт. Жало должно быть тонким и чистым на протяжении всей работы.

Для этого есть влажная своеобразная губка и время от времени вы можете очищать горячее жало, чтобы удалить все остатки, которые накапливаются на нем. НЕ пытайтесь очистить напильником или наждачной бумагой грязное или изношенное жало.

Если оно не может быть очищено, замените его. На рынке есть много разнообразных паяльников, и вы также можете купить хороший флюс, чтобы получить хорошее соединение элементов во время пайки. НЕ используйте флюс если вы пользуетесь припоем, который уже содержит его.

Большое количество флюса - одна из основных причин сбоя цепи. Если тем не менее вы должны использовать дополнительный флюс как при лужении медных проводов, необходимо очистить рабочую поверхность после окончания работы.

Для того, чтобы припаять элемент правильно, вы должны делать следующее: - Зачищать выводы элементов наждачной бумагой (желательно с небольшим зерном). - Сгибать выводы компонентов на правильном расстоянии от выхода из корпуса для удобного расположения на плате. - Вы можете встретить элементы, выводы которых толще, чем отверстия в плате. В этом случае необходимо немного расширить отверстия, но не делайте их слишком большими – это затруднит пайку. - Вставить элемент необходимо так, чтобы его выводы немного выступали от поверхности платы. - Когда припой расплавится, он равномерно растечется по всей области вокруг отверстия (добиться этого можно при правильной температуре паяльника). - Пайка одного элемента должна быть не более 5 секунд.

Удалите излишки припоя и дождитесь пока припой на плате остынет естественно (не дуя на него). Если все сделали правильно, поверхность должна иметь яркий металлический оттенок, края должны быть гладкими.

Если припой выглядит тусклыми, с трещинами, или имеет форму капли, то это называется сухой пайкой. Вы должны удалить его и сделать все снова.

Но будьте осторожны, чтобы не перегреть дорожки, иначе они будут отставать от платы и легко ломаться. - Когда вы паяете чувствительный элемент, необходимо держать его металлическим пинцетом или щипцами, которые будут поглощать лишнее тепло, чтобы не сжечь элемент. - Когда вы завершаете вашу работу, обрежьте избыток от выводов элемента и можете очистить плату спиртом, чтобы удалить все остатки флюса.Перед началом работы необходимо найти все элементы и разделить их по группам. Для начала установите гнёзда для ICs и выводы для внешних связей и припаяйте их на свои места.

Затем резисторы. Не забудьте разместить R7 на определенном расстоянии от печатной платы так как он очень сильно нагревается, особенно когда течет большой ток, и это может повредить её.

Это также рекомендуется сделать для R1. затем размещайте конденсаторы не забывая про полярность электролитического и наконец припаивайте диоды и транзисторы, но будьте осторожны, чтобы не перегреть их и припаять их так как показано на схеме. Установите силовой транзистор в heatsink.

Чтобы сделать это необходимо следить за диаграммой и не забывать использовать изолятор (слюда) между телом транзистора и heatsink и специальное очищающее волокно, чтобы изолировать винты от heatsink. Подсоедините изолированный провод к каждому выводу, будьте осторожны, чтобы сделать хорошее качественное соединение, так как здесь течет большой ток, особенно между эмиттером и коллектором транзистора.

Также при сборке блока питания неплохо было бы прикинуть где какой элемент будет находиться, для того, чтобы вычислить длину проводов, которые будут между PCB и потенциометрами, силовым транзистором и для входной и выходной связей. Соедините потенциометры, LED и силовой транзистор и подключайте две пары концов для входной и выходной связей.

Убедитесь по диаграмме, что вы все делаете правильно, старайтесь ни чего не перепутать, так как в цепи 15 внешних связей и допустив ошибку ее потом сложно будет найти. Также было бы неплохо использовать провода разных цветов.Печатная плата лабораторного блока питания, ниже будет ссылка на скачивание печатки в формате .lay :Рисунок расположения элементов на плате:Схема соединения переменных резисторов (потенциометров) для регулирования выходного тока и напряжения, а также соединение контактов силового транзистора:Обозначение выводов транзисторов и операционного усилителя:Обозначение клемм на схеме: - 1 и 2 к трансформатору. - 3 (+) и 4 (-) ВЫХОД DC. - 5, 10 и 12 на P1. - 6, 11 и 13 на P2. - 7 (E), 8 (B), 9 (E) к транзистору Q4. - LED нужно установить на внешней стороне платы.Когда все внешние связи сделаны необходимо проверить плату и почистить ее, чтобы удалить остатки припоя.

Убедитесь, что нет соединения между смежными дорожками которое может привести к короткому замыканию и если все хорошо - подсоедините трансформатор. И подключите вольтметр .НЕ КАСАЙТЕСЬ ЛЮБОГО УЧАСТКА ЦЕПИ ПОКА ОН ПОД НАПРЯЖЕНИЕМ.

Вольтметр должен показывать напряжение от 0 до 30 вольт в зависимости от того, в каком положении P1. Поворот P2 против часовой стрелки должен включать LED, показывая, что наш ограничитель работает.

Список элементов.  

Рекомендуем почитать